Accuracy in Privacy-Preserving Data Mining Using the Paradigm of Cryptographic Elections

نویسندگان

  • Emmanouil Magkos
  • Manolis Maragoudakis
  • Vassilios Chrissikopoulos
  • Stefanos Gritzalis
چکیده

Data mining technology raises concerns about the handling and use of sensitive information, especially in highly distributed environments where the participants in the system may by mutually mistrustful. In this paper we argue in favor of using some well-known cryptographic primitives, borrowed from the literature on large-scale Internet elections, in order to preserve accuracy in privacy-preserving data mining (PPDM) systems. Our approach is based on the classical homomorphic model for online elections, and more particularly on some extensions of the model for supporting multi-candidate elections. We also describe some weaknesses and present an attack on a recent scheme [1] which was the first to use a variation of the homomorphic model in the PPDM setting. In addition, we show how PPDM can be used as a building block to obtain a Random Forests classification algorithm over a set of homogeneous databases with horizontally partitioned data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Privacy Preserving Frequency Mining in 2-Part Fully Distributed Setting

Recently, privacy preservation has become one of the key issues in data mining. In many data mining applications, computing frequencies of values or tuples of values in a data set is a fundamental operation repeatedly used. Within the context of privacy preserving data mining, several privacy preserving frequency mining solutions have been proposed. These solutions are crucial steps in many pri...

متن کامل

Privacy-Preserving Distributed Data Mining Techniques: A Survey

In various distributed data mining settings, leakage of the real data is not adequate because of privacy issues. To overcome this problem, numerous privacy-preserving distributed data mining practices have been suggested such as protect privacy of their data by perturbing it with a randomization algorithm and using cryptographic techniques. In this paper, we review and provide extensive survey ...

متن کامل

Accurate and large-scale privacy-preserving data mining using the election paradigm

With the proliferation of the Web and ICT technologies there have been concerns about the handling and use of sensitive information by data mining systems. Recent research has focused on distributed environments where the participants in the system may also be mutually mistrustful. In this paper we discuss the design and security requirements for large-scale privacypreserving data mining (PPDM)...

متن کامل

Privacy-Preserving Classification of Customer Data without Loss of Accuracy

Privacy has become an increasingly important issue in data mining. In this paper, we consider a scenario in which a data miner surveys a large number of customers to learn classification rules on their data, while the sensitive attributes of these customers need to be protected. Solutions have been proposed to address this problem using randomization techniques. Such solutions exhibit a tradeof...

متن کامل

A Survey of Cryptographic and Non-cryptographic Techniques for Privacy Preservation

Cryptography is to become familiar with the requirement of large, complex, information rich data sets for it’s privacy preservation. The privacy preserving data mining has been generated; to go through the concept of privacy in data mining is hard. Several algorithms and approaches are being generated theoretically, but practically it is hard. Privacy in data mining can be achieved through seve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008